String Theory and M-Theory Notes for L. Susskind’s Lecture
Series (2011), Lecture 8

This paper contains my notes on Lecture Eight of Leonard Susskind’s 2011 presentation on
String Theory and M-Theory for his Stanford Lecture Series. These read-along notes are meant
to aid the viewer in following Susskind’s presentation, without having to take copious notes.
The fault for all errors in these notes belong solely to me.

1 Intro: Conformal Invariance
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The equations of electrostatics in 2D are
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has conformal invariance (angle preserving).
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We can map region to region with solutions in the complex plane.

YA

z=x+Iy

vA

w=u+iv

S
o

YA

X

Y

u

Figure 1. Complex variable mapping: w = w(z).
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Figure 2. What can we know about w’(z)?



If w'(z) exists, then
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However, for w’(z) to make sense, it must have the same value regardless of which direction Az has
in the complex plane.
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Since this derivative must be true for every direction in the plane, it must be true along the x axis,
and also along the y axis.
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This brings us to the Cauchy-Riemann Equations:
Real part : % = % , (6a)
Imaginary part : % = fg—z . (6b)
Differentiating yields,
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From this we get,
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2 Polar Coordinates

Let us represent a second variation of z, different than 6z, by Az. And

Sz=pe?, Az=pe?. (9)
So,
oz P i(9—6")
L =L ) 10
R (10)
YA vA
6z " S N~
Az Aw <
x e

Figure 3. Two independent directions.



Now,
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giving the same difference of angle.

3 Examples:

Is w = 22 analytic?

w'éz 0z P io-0)

w' Az _E_p’

; (11)

2 — P+ 2zyi=u+iv. (12)
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which are the Cauchy-Riemann equations.
However, if we try w = z* = x — iy, we will find that this does not work.
What about w = e*?7
w=e* ="t = %W = % cosy + ie” siny . (14)
Then,
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Now we try w = log z. Let’s begin by looking at z in polar coordinates. From
z=re?, (16)
we get ' _
log re'® = logr + loge® = logr + if (17)
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Figure 4. The £y axis corresponds to § = £7/2. The w space is like the

world sheet of a string in 7, 0 coordinates. The incoming string injects at
the origin of the z-plane.

Regarding the above figure, if we shift the w-plane to the left then the figure in the z-plane
shrinks by a uniform factor. Push it to the right, it expands or dilates.

Now if we map from f%w to %W, that will include the left-half plane and will map the upper line
to the lower line.
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Figure 5. The resulting map is a cylinder in the w-plane.

But, since —7/2 = 37/2, the points ¢, ¢’ are identified with each other. Thus, we get a cylinder
in w-space, which represents a closed string.

Next, a linear fractional transformation,
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which maps circles to circles and lines to lines.
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Figure 6. Special mappings.

With z = iy, '
_1+dy 144y re'?
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Figure 7. Thus w maps the half-plane > 0 to the interior

of the unit disk.
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Figure 8. Thus w maps the half-plane > 0 to the interior

of the unit disk.

Calculate a path integral.

4 String Theory Scattering Amplitudes

Degrees of freedom of a spacetime point of a world sheet.

Perform the transformation (a Wick rotation ?): 7 — ir
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Figure 9. Two strings in, two strings out.



Next, we perform the integral:
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Amplitude = / e 4 7 . (20)

all poss. ways of filling
up the surface

We account for the incoming/outgoing momenta “by hand.” Also, we need one more integral to
account for the historiesl of the particles:

[fe ([ dra [(8;;)2 N (i;“ﬂ | "

Now, we perform a conformal transformation: Map the strip to a disk.

Figure 10. Conformal transformation: Map the strip to a disk. The incoming
and outgoing particles are represented by points on the boundary.

For each momenta, we put into the integrand a factor of

H eikw(z) . (22)

particle
on boundary

Note: This is open string theory:
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momenta
on boundary

The z’s are the positions on the disk where the momenta are ‘injected’.

Then we have
/ e—Action H eikuaz“(zi) . (24)

for a total of 26 kinds of charge.

Now, think of the disk as a world in 2-D.



