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Abstract

This paper contains my notes on Lecture Three of Leonard Susskind 2013 presentation on
Statistical Mechanics for his Stanford Lecture Series. (He also made a 2009 video series on the
same topic.) They can be found on YouTube. This time we deal with the law of entropy.

1 Getting Started

The main goal of statistical mechanics is to reproduce the equations of thermodynamics. Thermo-
dynamics considers systems in equilibrium, which we can characterize by a few parameters, such as
volume, temperature, mass, pressure, energy, etc. Now, suppose we have a given discrete system
that holds its energy in discrete levels, Ei being the energy in the ith level. If there are ni particles
in the ith level, then the energy in that level is niEi, and the total energy of the system is∑

i

niEi = E , (1)

where ∑
i

ni = N , (2)

where N is the total number of particles of the system.
However, we can imagine our system to vary continually in time by redistributing the particles

among the different energy levels, constrained by the total energy being fixed. Surely, our macro-
scopic thermodynamic variables are not sensitive to these random variations, or they could have
never been useful.

We have two principle that will come to our rescue here. The first is the use of the statistical
device of the average. Perhaps our intuition should lead us to consider the average energy of the
system as more useful than its total energy, for the average energy ought to be more representative
of what the majority of particles are experiencing. Thus, on dividing (1) through by N we get∑

i

ni

N
Ei =

E

N
≡ E . (3)

And, since ni

N approaches pi for very large N , then∑
i

piEi =
E

N
≡ E . (4)

We haven’t yet addressed the existence of stable equilibrium of our system. To accomplish this,
we’ll need to concept of entropy, so let’s get to that now.
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2 Combinatorics, Stirling’s Formula, and Entropy

We’ve imagined our N particles partitioned into a finite number of energy levels, there being ni in
the ith energy level. Ignoring all other constraints, in how many ways can we take those N particles
and distribute them among the various energy levels? The answer comes to us from Combinatorics,
as the “number of arrangements,” which I’ll label as Ω, but Susskind will later label as C:

Ω =
N !

Πi(ni!)
. (5)

At this point, we’d be quite stymied were it not for Stirling’s Formula to approximate the factorials
of large numbers. So, for N large,

N ! ≈ NNe−N . (6)

Now, applying Stirling’s Formula to (5), we get

Ω =
NNe−N

nn1
1 nn2

2 · · ·
1

e−n2e−n2 · · ·

=
NN

nn1
1 nn2

2 · · ·

=
Nn1+n2+···

nn1
1 nn2

2 · · ·

=
1(n1

N

)n1
(n2

N

)n2

· · ·

=
1

pn1
1 pn2

2 · · ·

=
[
pn1
1 pn2

2 · · ·
]−1

. (7)

Now, we apply the logarithm as before, to get

log Ω = −
∑
i

log pni
i = −

∑
i

ni log pi . (8)

This is close, but we still have that ni to deal with. Let’s divide through by N .

1

N
log Ω = −

∑
i

pi log pi . (9)

This then becomes our new definition of entropy S:

S(pi) = −
∑
i

pi log pi . (10)

Next time we’ll introduce Lagrange multipliers and find the so-called Partition Function.
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