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Abstract

This paper contains my notes on Lecture Four of Leonard Susskind 2013 presentation on Sta-
tistical Mechanics for his Stanford Lecture Series. (He also made a 2009 video series on the
same topic.) They can be found on YouTube. This time we define the Partition Function and
calculate the average energy of an ideal gas.

1 Getting Started

Rather than maximizing the entropy, Susskind prefers to minimize the negative entropy:
—S(pi) =) pilogp;. (1)
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Now we proceed to minimizing the negative entropy with constraints, using a Lagrange multiplier
for each of the two constraints.
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which constrains F’ by the conservation of probability and energy. Now,
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This last equation can be solved for p;:
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At this point it is customary to introduce the variable Z, called the Partition Function, by

Z = el+a) (5)
Thus (4) becomes
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Now, we haven’t fully expended the usefulness of our two constraints, which is fortunate because
we need them to determine the Lagrange multipliers o and 3. For starters, ), p; = 1 implies that
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Therefore,
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Furthermore, since Y, p;E; = E then
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On differentiating (8) by 3, we get
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Combining this last equation with (9) yields
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We’ll come back to this result.
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From this have

S=BE+logZ.

Now, back to temperature. From an earlier lecture we determined that
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On taking the differential of (13), we have that
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where we used Eq. (11). On comparing this last equation with (14), we find that
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Therefore, our formal Lagrange multiplier § has taken on a direct physical meaning.
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2 Average Energy of an Ideal Gas

In an ideal gas, all energy is kinetic. We assume that this gas is contained in a box of volume V.

We begin with the partition function Z.
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Here, Susskind describes a controversy about whether or not one should include a factor of 1/N! in

this integrand, but does so himself for later simplicity.!
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The integrand [ dp e~PP is just a number.
Since the Gaussian integral
o0
/ dre® = /7,
— 00

then

7 VN {Qmﬂ'rN/Q

=55
VN r2mm3N/2
T NNe-N [ 8 }
B (6)N[2mﬂ':|3N/2

p B ’
where p = N/V.

On taking the logarithm of both sides, we get
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Hence,
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Hence, the average energy per particle is 5
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1In the process of taking the logarithmic derivative of Z, all of its constant factors go to zero, so we can add in

constant factors for free.



