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Abstract
This paper contains my notes on the fifth lecture of Leonard Susskind’s 2013 Statistical Me-
chanics Stanford Lecture Series. (He also made a 2009 video series on the same topic.) They
can be found on YouTube. Our goal in this paper is to produce the ideal gas law from statistical
principles.

1 Getting Started

We begin by introducing the Helmholtz free energy A.

S = −
∑
i

pi log pi

= −
∑
i

1

Z
e−βEi

[
− βEi − logZ

]
=

∑
i

1

Z
e−βEi

[
βEi + logZ

]
= β

∑
i

piEi +
1

Z
logZ

∑
i

e−βEi . (1)

From this have

S = βE + logZ =
E

T
+ logZ . (2)

Now, we introduce the variable A by
A ≡ E − TS , (3)

and, remembering that β = 1/T , thereby get

A = − logZ(β)

β
. (4)

2 Zeroth Rule of Partial Differentiation in Thermodynamics

Once a partial derivative is established under one set of independent variables, it remains fixed after
any change in the set of independent variables.

Now, this is not to say that you cannot swap it out if you have an identity for it to swap with.

If this rule were not true, then half the proofs used to establish mathematical identities in
thermodynamics would be false.
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3 A Tricky Lemma

Our fundamental thermodynamic equation of the day is

∂E

∂V

∣∣∣
S
=
∂E

∂V

∣∣∣
T
− ∂E

∂S

∣∣∣
V

∂S

∂V

∣∣∣
T
. (5)

To start this proof, we will take T and V as our two independent variables. We then derive two
intuitive equations

dE =
∂E

∂V

∣∣∣
T
dV +

∂E

∂T

∣∣∣
V
dT , (6a)

dS =
∂S

∂V

∣∣∣
T
dV +

∂S

∂T

∣∣∣
V
dT . (6b)

Soon, we will convert from V and T as our independent variables to V and S. But before we

do that, let’s convert
∂E

∂T

∣∣∣
V
. Now, we have assumed that we need only two independent variables,

and one of them is V , which is being held constant in the presented partial derivative. Hence, that
leaves only one variable left on which all the dependent variables are dependent. That means that
their partial derivatives are necessarily just ordinary derivatives. In accordance with this fact, we
can write

∂E

∂T

∣∣∣
V
=
dE

dT

∣∣∣
V
=
dE

dS

∣∣∣
V

dS

dT

∣∣∣
V

=
∂E

∂S

∣∣∣
V

∂S

∂T

∣∣∣
V
. (7)

Substituting this result into (6a), we get that

dE =
∂E

∂V

∣∣∣
T
dV +

∂E

∂S

∣∣∣
V

∂S

∂T

∣∣∣
V
dT . (8)

If we divide (6a) through by dV and take V and S as our new independent variables, we get
that

∂E

∂V

∣∣∣
S
=
∂E

∂V

∣∣∣
T
+
∂E

∂S

∣∣∣
V

∂S

∂T

∣∣∣
V

∂T

∂V

∣∣∣
S
. (9)

To go from this last equation to get (5), we must take our thermodynamic process as isentropic,
or of constant entropy (S = const), and we’re down to just one independent variable V . Taking
dS = 0 in (6b), we get

∂S

∂V

∣∣∣
T
dV +

∂S

∂T

∣∣∣
V
dT = 0 . (10)

On dividing through by dV , we get

∂S

∂V

∣∣∣
T
+
∂S

∂T

∣∣∣
V

∂T

∂V

∣∣∣
S
= 0 , (11)

which gives us
∂S

∂T

∣∣∣
V

∂T

∂V

∣∣∣
S
= − ∂S

∂V

∣∣∣
T
. (12)

Substituting this result into (9), gives us

∂E

∂V

∣∣∣
S
=
∂E

∂V

∣∣∣
T
− ∂E

∂S

∣∣∣
V

∂S

∂V

∣∣∣
T
. (13)
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4 Ideal Gas Equation of State

Note: Throughout the following discussion, the total number of particles N of a given substance is
constant.

Mathematically speaking, the pressure P is the negative response to the change in average energy
of a substance in response to its adiabatic change in volume:

dE = −PdV . (14)

Hence,
∂E

∂V

∣∣∣
S
= −P . (15)

Therefore, (13) can be rewritten as

P = −∂E
∂V

∣∣∣
T
+
∂E

∂S

∣∣∣
V

∂S

∂V

∣∣∣
T
. (16)

The next step requires us to go from

dE = TdS (17)

to
∂E

∂S

∣∣∣
V
= T , (18)

but I don’t know the justification for this step. Some references treat this merely as a definition:

T ≡ ∂E

∂S

∣∣∣
V
, (19)

but I await a good justification for it.1

Thus, (16) simplifies to

P = −∂E
∂V

∣∣∣
T
+ T

∂S

∂V

∣∣∣
T
. (20)

This last RHS can be factored to

P = − ∂

∂V
[E − TS ]

∣∣∣
T

= −∂A
∂V

∣∣∣
T

from Eq. (3)

= T
∂ logZ(β)

∂V
from Eq. (4) . (21)

Observation 1: Our considerations so far have been general, being independent of the nature of
the matter involved.

Comment 1: Generally speaking, for generic control parameter X, there exists a variable X̃,
referred to as the conjugate variable, that satisfies the following relation

X̃ = − ∂E

∂X

∣∣∣
S
. (22)

1I should think that this definition should be consistent with the relation TdS = dqreversible.
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Continuing, we can determine the equation of state for an ideal gas from

P = T
∂ logZ(β)

∂V
, (23)

if we can solve for the partition function for an ideal gas.

Z =

∫
dx dp e−βp2/2m = V Nf(β) , (24)

where f(β) is not a function of V . So then

logZ = N log V + · · · , (25)

Hence,

P = T
∂ logZ(β)

∂V
=
NT

V
. (26)

And, if we convert to experimentalists’s temperature T , we get the familiar

P =
NkBT
V

, (27)

where kB is the Boltzmann constant.

5 Energy Fluctuations

Note: I took these notes from Susskind’s 2009 Lecture 3 of Modern Physics: Statistical Mechanics.

We begin with the mathematical notion of the variance of a statistical variable x(i), where i is
an index.

The statistical Variance is defined by

Var(x(i)) ≡ ⟨ (x(i)− x)2 ⟩ , (28)

where

x ≡ ⟨x(i) ⟩ = 1

N

N∑
i=1

x(i) . (29)

Thus, we use two notations for the same meaning of an average. Expanding on (28), we have

Var(x(i)) = ⟨ (x(i)− x)2 ⟩
= ⟨x(i)2 − 2x(i)x+ x2 ⟩
= ⟨x(i)2 ⟩ − 2x2 + x2

= ⟨x(i)2 ⟩ − x2 . (30)

Now that the formalities are out of the way, we want to know the variance of the energy of a
large collection of energetic particles. We begin with

E = −∂ logZ
∂β

. (31)
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And then

⟨E(i)2 ⟩ =
∑

p(i)E(i)2

=
1

Z

∑
e−βEiE2

i

=
1

Z

∂2 logZ

∂β2
. (32)

Hence, the variance of Ei becomes

Var(E(i)) ≡ ⟨E(i)2 ⟩ − E2

=
1

Z

∂2 logZ

∂β2
−

( 1

Z

∂ logZ

∂β

)2

=
∂2 logZ

∂β2
. (33)

Thus,

(∆E)2 = −dE
dT

dT

dβ
= T 2 dE

dT
= T 2 dE

dT
kB , (34)

where T = kBT .2

The upshot is that since kB is much smaller that its cofactors in (34), then ∆E is a very small
number.

6 Appendix: My SD Solution to the Lemma

Note: The letters SD in this context stand for ‘Structured Differentiation’.

What follows is my proof of the identity

∂E

∂V

∣∣∣
S
=
∂E

∂V

∣∣∣
T
− ∂E

∂S

∣∣∣
V

∂S

∂V

∣∣∣
T
. (35)

For convenience we define the state vector

ψ = (E, V, S, T )t . (36)

We start off with the two independent variables

η = (V, T )t , (37)

and switch to the two ‘new’ independent variables

η′ = (V, S)t . (38)

Hence we have the functional dependencies mediated by a composite function

ψ′(η′) = ψ(η(η′)) . (39)

Differentiating this by η′, we get
∂ψ′

∂η′ =
∂ψ

∂η

∂η

∂η′ , (40)

2The variable T is what an experimentalist would deal with directly, and kB is the conversion factor.
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which, in explicit matrix form, looks like this
∂E/∂V ∂E/∂S
∂V/∂V ∂V/∂S
∂S/∂V ∂S/∂S
∂T/∂V ∂T/∂S

 =


∂E/∂V ∂E/∂T
∂V/∂V ∂V/∂T
∂S/∂V ∂S/∂T
∂T/∂V ∂T/∂T

 [
∂V/∂V ∂V/∂S
∂T/∂V ∂T/∂S

]
. (41)

For the partials in the 4× 2 matrix on the LHS, we have that

∂V/∂V = ∂S/∂S = 1 and ∂V/∂S = ∂S/∂V = 0 . (42)

For the partials in the 4× 2 matrix on the RHS, we have that

∂V/∂V = ∂T/∂T = 1 and ∂V/∂T = ∂T/∂V = 0 . (43)

Lastly, for the partials in the 2× 2 matrix (the Jacobian matrix), we have that

∂V/∂V = 1 and ∂V/∂S = 0 . (44)

Hence (41) simplifies to
∂E/∂V ∂E/∂S

1 0
0 1

∂T/∂V ∂T/∂S

 =


∂E/∂V ∂E/∂T

1 0
∂S/∂V ∂S/∂T

0 1

 [
1 0

∂T/∂V ∂T/∂S

]
. (45)

Now, there is a lot of useful information in this matrix equation! Once convenient way to extract
this information is by taking the determinant of 2× 2 submatrices.3

For starters, the Jacobian matrix is

δη

δη′ =

[
1 0

∂T/∂V ∂T/∂S

]
. (46)

The determinant of this matrix (known as the Jacobian) is ∂T/∂S
∣∣
V
, and, naturally, this factor will

appear in every computation when we extract by determinants.
There are

(
4
2

)
= 6 ways to form 2×2 matrix equations from (45). For instance, if we just extract

on rows 2 and 3, we get [
1 0
0 1

]
=

[
1 0

∂S/∂V ∂S/∂T

] [
1 0

∂T/∂V ∂T/∂S

]
. (47)

On taking the determinant across this equation, and remembering that the determinant of a product
is the product of the determinants, we get

1 =
∂S

∂T

∣∣∣
V

∂T

∂S

∣∣∣
V
. (48)

This is a well-known identity in thermodynamics, referred to as inversion or reciprocity, or perhaps
by even other names.

Now let’s extract on rows 1 and 4, to get[
∂E/∂V ∂E/∂S
∂T/∂V ∂T/∂S

]
=

[
∂E/∂V ∂E/∂T

0 1

] [
1 0

∂T/∂V ∂T/∂S

]
. (49)

3The precise justification for this procedure is given in my many Structured Differentiation papers.
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On taking determinants this we get

∂E

∂V

∣∣∣
S

∂T

∂S

∣∣∣
V
− ∂E

∂S

∣∣∣
V

∂T

∂V

∣∣∣
S
=
∂E

∂V

∣∣∣
T

∂T

∂S

∣∣∣
V
. (50)

This result already looks promising. Let’s multiply through by the reciprical of
∂T

∂S

∣∣∣
V

=
∂S

∂T

∣∣∣
V

to

get
∂E

∂V

∣∣∣
S
− ∂E

∂S

∣∣∣
V

∂T

∂V

∣∣∣
S

∂S

∂T

∣∣∣
V
=
∂E

∂V

∣∣∣
T
. (51)

Now, let’s isolate
∂E

∂V

∣∣∣
S
:

∂E

∂V

∣∣∣
S
=
∂E

∂S

∣∣∣
V

∂T

∂V

∣∣∣
S

∂S

∂T

∣∣∣
V
+
∂E

∂V

∣∣∣
T
. (52)

To our aid is another well-known identity called the Triple-Product Rule, given by4

∂T

∂V

∣∣∣
S

∂S

∂T

∣∣∣
V

∂V

∂S

∣∣∣
T
= −1 . (53)

By use of the reciprocal rule this becomes

∂T

∂V

∣∣∣
S

∂S

∂T

∣∣∣
V
= − ∂S

∂V

∣∣∣
T
. (54)

On substituting this into (52) and rearranging, we get

∂E

∂V

∣∣∣
S
=
∂E

∂V

∣∣∣
T
− ∂E

∂S

∣∣∣
V

∂S

∂V

∣∣∣
T
, (55)

which is what we were to prove.
By the way, the Triple Product Rule is extractable from (45) by taking determinants on rows 3

and 4.

I know that this proof is a bit long, but to its credit, it’s clear, straightforward, free of unmotivated
assumptions or unclear reasonings. In fact, the process used in the proof is completely familiar: We
start with a change of dependent-vs-independent variables, which creates a composite functional
relation in (39). Since we are looking for relationships among derivatives, we differentiate (39),
using the chain rule to produce (40), which expands into the matrix version (41).

The next step is to simplify the components where possible. To do this, we need only keep in mind
what are the independent variables for each matrix. To finish the problem, we merely choose one
or more pairs of rows on which to extract information by determinants, adding in thermodynamics
identities as needed.

Furthermore, we did not need to make conversions between differentials and partial derivatives.
We also did not need to make any special assumptions, like a process taking place at constant
entropy. In fact, mathematically speaking, all the variables have entered the problem on an equal
footing, and the variables could be permuted amongst themselves in any fashion and the result
would also be a valid equation — at least mathematically.

Lastly, we did not need to concern ourselves if we needed to rely on the Zeroth Rule of Par-
tial Differentiation in Thermodynamics. The reason for this is that all the differentiations were
performed at one time in Equation (40), and not as a series of sequential steps.

4There’s nothing special about T , S, and V . You could use any three variables in it.
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Now, it’s conceivable that by choosing fewer variables to stick into ψ in Equation (36), that one
could produce the derived equations with fewer components to sort through. Almost always, I put
all the relevant variables of the problem into ψ.

I will now propose the First Principle of Structured Differentiation:

Let ψ be an ordered listing of all relevant thermodynamic variables to a given change-of-
variable problem. Then, everything that can be known about the first-partial derivatives
of these variables is contained in the equation

∂ψ′

∂η′ =
∂ψ

∂η

∂η

∂η′ , (56)

up to manipulations by thermodynamic identities.

Although I can’t prove this principle, it certainly seems quite reasonable. And the problem I
solved above it is a perfect example of how it all plays out.

Most of the problems I have solved of this type over many years have been quickly solved by the
use of the method demonstrated above (using determinants), but it may actually be solved faster, in
some cases, just to equate corresponding components. For example, on equating components from
the LHS and RHS of (45) in position (1,1), we get that

∂E

∂V

∣∣∣
S
=
∂E

∂V

∣∣∣
T
+
∂E

∂T

∣∣∣
V

∂T

∂V

∣∣∣
S
, (57)

and from the (1,2) component, we get

∂E

∂S

∣∣∣
V
=
∂E

∂T

∣∣∣
V

∂T

∂S

∣∣∣
V
, (58)

and so on to completion, adding in thermodynamics identities as needed.
Note: in thermodynamics terminology, this last equation is variously referred to as ‘adding in a

variable’ or ‘the chain rule’.

So, is there anything ‘tricky’ about the SD solution? Well, once you know what the old and
new sets of independent variables are, it’s pretty straightforward from there. The tricky part of this
problem was in finding the correct old and new sets of independent variables.
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