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Abstract

This paper contains my notes on Lecture Seven of Leonard Susskind’s 2009 presentation on Sta-
tistical Mechanics for his Stanford Lecture Series. The following notes are meant to supplement
the more extensive notes I made for his 2013 Lecture series. This time we look at Black-Body
Radiation.

1 Getting Started

The energy levels of a quantum mechanical oscillator go as

En = ℏωn . (1)

Imagine that we have a box at temperature T , containing a superposition of harmonic oscillators at
various wavelengths. According to classical thermodynamics, each oscillator in thermal equilibrium
should have an energy equal to kT . But classically there seemed to be no limit on the smallest
wavelength, hence the energy in all the wavelengths should blow up.

Early radiation studies coming from a black box indicated that there existed a shortest wave-
length, and it was a function of temperature.

Planck’s solution attempt was to assume that the chamber of the black box was surfaced by
atoms that emitted and absorbed radiation only at definite frequencies. He then proposed that
when an atom oscillates, it emitted EM energy at discrete wavelengths ω, given by (1), technically,

En = nhν . (2)

A better way to think of this is that the radiation is quantized at discrete frequencies. Later on,
Einstein would interpret this radiation as photons with quantized frequencies.

For the radiation in the box to reflect, we need the E-field to be zero on the walls.

Figure 1. The acceptable EM waves have to fit into the cavity

so that the E-field at the walls is zero.
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Y = Ym sin
mπ

L
x , m = 0, 1, 2, 3, . . . . (3)

On summing,

Y (x) =
∑
m

Ym sin
mπ

L
x . (4)

We can re-express the arguments in terms of the wavenumbers

Ym sin
mπ

L
x → Ym sin kx where k ≡ mπ

L
. (5)

If we define c as the speed of propagation of the wave, then

ω = ck . (6)

Now we consider the waves that can propagate inside the chamber in three-dimensions.

F =
∑

Ym sin
mxπ

L
x sin

myπ

L
y sin

mzπ

L
z , (7)

where mx,my,mz are integers when the cavity is a cubic box of dimensions L×L×L. Or, we write
(8) in terms of wavenumbers:

F =
∑

Ym(t) sin kxx sin kyy sin kzz , (8)

and now

ω = c|k | = c
√
k2x + k2y + k2z (9)

is the frequency of an oscillation.
Now we ask how much energy is stored in all the waves. The radiation field inside the box comes

into thermal equilibrium with the walls of the box, which are at temperature T . Let’s look at the
energy stored in a wave of wavenumber k.

E =
ωℏ

eβωℏ − 1
=

|k |cℏ
eβ|k |cℏ − 1

. (10)

By summing on all the wavenumbers, we get

E =
∑

mx,my,mz

|k |cℏ
eβ|k |cℏ − 1

. (11)

We will approximate this sum with an integral. If L is large, the difference between neighboring
values of k is small. So, for k = mπ/L

∆kx = ∆ky = ∆kz =
π

L
. (12)

Then

∆3k
∑

mx,my,mz

→
∫

dkx dky dkz . (13)

Hence, ∑
mx,my,mz

→ 1

∆3k

∫
dkx dky dkz . (14)
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Therefore, our expression for the total energy is

E =
L3

π3

∫
d3k|k |cℏ
eβ|k |cℏ − 1

. (15)

With change of variables

u/βcℏ = k ,

kxcℏ = ux ,

kycℏ = uy ,

kzcℏ = uz , (16)

then,

E =
L3

π3

∫
d3k|k |cℏ
eβ|k |cℏ − 1

=
L3

π3

∫
d3u

(βcℏ)3
|u |
β

1

eu − 1

=
L3

π3

1

c3ℏ3β4

∫ ∞

0

d3u
u

eu − 1
. (17)

On converting the integral, which is in rectangular coordinates to spherical coordinates, we get∫ ∞

0

d3u
u

eu − 1
→ 4π

∫ ∞

0

dr
r3

er − 1
. (18)

Now we divide this integral by eight because we want to restrict the values of the wavenumbers to
only nonnegative values, getting∫ ∞

0

d3u
u

eu − 1
→ 4π

8

∫ ∞

0

dr
r3

er − 1
. (19)

Hence,

Etotal =
L3

π3

1

c3ℏ3β4

4π

8

∫ ∞

0

dr
r3

er − 1
. (20)

But the definite integral

∫ ∞

0

dr
r3

er − 1
has the value π4/15.

Finally, we add in a factor of 2 to account for two polarizations, and we replace β−1 by T , to get

Etotal =
π2

15ℏ3c3
L3

β4
= V T 4 4

c
σ , (21)

where σ is the Stephan-Boltzmann constant.
Now, there is a natural cutoff frequency ωcutoff that depends on the temperature at which an

oscillator can no longer function, and that is when the oscillator energy goes as

ℏωcutoff = T , (22)

the classical enbergy. Thus the cutoff frequency is

ωcutoff =
T

ℏ
. (23)
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