Section 5:
Note: This is a new websection on my website. I expect to be updating this section from time to time.
Note: The math rendering on this webpage is brought to us by the mathjax people. Unfortunately, mathjax does not support the LaTeX subequations environment. Therefore, the equation numbers may differ between the downloadable PDF file version and this webpage version.
Click on this link to find Problem (5.6a) on page 78 of NFCM. Problem (5.6a) on page 78 of NFCM.
The Problem
On page 78 of NFCM (see References), we find problem (5.6a): Given that $I^2=-1$ and that $I$, $A$, and $B$ mutually commute, show that \begin{equation} \cos\, (A+IB) = \cos A\, \cosh B - I\sinh B\, \sin A \,.\label{eq:First} \end{equation}
A few identities we will need are \begin{align} e^X &= \cosh X + \sinh X \,,\label{eq:Hyperbolic1}\\ 2\sinh X &= e^X - e^{-X} \,,\label{eq:Hyperbolic2}\\ 2\cos X &= e^{IX} + e^{-IX} \,.\label{eq:Hyperbolic3} \end{align} Now, \begin{align} 2\cos\, (A+IB) &= e^{I(A+IB)} + e^{-I(A+IB)} \notag\\ &= e^{IA}e^{-B} + e^{-IA}e^{B} \notag\\ &= e^{IA}e^{-B} +e^{-IA}e^{-B} - e^{-IA}e^{-B} + e^{-IA}e^{B}\quad\text{(add in and subtract out)} \notag\\ &= (e^{IA} +e^{-IA})e^{-B} + e^{-IA}(e^{B} - e^{-B})\notag\\ &= 2\cos A\,( \cosh B - \sinh B)+ 2(\cos A - I\sin A)\sinh B\notag\\ &= 2(\cos A\, \cosh B - I\sinh B\, \sin A)\,.\label{eq:NearDone} \end{align} On cancelling the factors of 2, we get \begin{equation} \cos\, (A+IB) = \cos A\, \cosh B - I\sinh B\, \sin A \,.\label{eq:Done} \end{equation}
D. Hestenes, New Foundations in Classical Mechanics, 2nd Ed., Kluwer Academic Publishers, 1999.
NFCM Problems and Solutions |